Oceanic Moho and Mantle

what we learned from recent active source seismic studies

Shuichi Kodaira IFREE, JAMSTEC

Reaching the Mantle Frontier: Moho and Beyond Sep. 9-11, 2010, Washington, D.C.

Active source seismic studies in NW Pacific

Active source seismic studies in NW Pacific

Farallon

(c) Chron M15 (139 Ma)

Formed near Izanagi - Farallon -Pacific triple junction

Clear magnetic anomaly except for the Jurassic magnetic quiet zone

Oceanic Moho at NW Pacific

Reston et al., (1999

40°N

Thick layer 2 formed by near-axis and off-axis volcanism

ODP801 Tivey et al. 2005

Sediments Hydrothermal Massive Flow

Pillows

Flows

Dykes

Gabbros

Sediments Alkalic Sill

Pillows Flows

Dykes

Gabbros

Hydrothermal JI Massive Flow III

Corresponding Basement Stratigraphic Sequence(s)

Variety of Moho (crust-mantle transition) from Oman ophiolite

Figure courtesy of S. Arai

Modeling Moho reflection based on ophiolite

Modeling Moho reflection based on ophiolite

Background velocity White et al. (1992)

Northern part; clear magnetic anomaly

Southern part; seamount activity

10

High velocity (Vp=8.7 km/s) and strong anisotropy (~10%) immediately below Moho

Oceanic Mantle at NW Pacific

Seismic anisotropy in oceanic lithosphere has been reported by many studies since Hess (1964)

In the NW Pacific, Vp=8.6 km/s with ~10% anisotropy at 40 - 50 km below Moho is detected as an average structure along the 1500 km-long profile,

but Vp and anisotropy just below Moho was not resolved

40

nľ

New observation: high Vp and anisotropic layer exists *immediately below Moho* in the NW Pacific fast spreading oceanic lithosphere

Shimamura et al. (1983)

High velocity/anisotropic mantle and LCRs

Lower crustal dipping reflectors have reported by previous seismic studies in the Pacific.

New observations:

-Lower crustal dipping reflectors coexist with high velocity / anisotropic mantle immediately below Moho Maximum dip direction of LCRs is parallel to the fast P-wave direction

Two models for LCRs: lithological layering and shear zone

The new observations support the model of basal shear at Moho i.e. mantle moved faster than crust due to active mantle upwelling

Moho is petrological and mechanical boundary

Mantle velocity reduction toward trench

140°E

150°E

160°E

170°E

180

Hydration of uppermost mantle?

New observations

- High velocity (Vp = 8.6 ~ 8.7 km/s) with strong anisotropic (7 ~ 10 %) mantle immediately below Moho
- and coexists with ridge ward lower crustal reflectors and simple/clear Moho reflection
 - indicating that strong share at Moho
 - i.e. mantle moved faster than crust due to active mantle upwelling
- Layered Moho reflection at the magnetic quiet zone
 thick crust/mantle transition zone due to off-ridge magmatic activity

Velocity reduction (6 ~ 8 %) toward a trench from an outer rise (due to hydration ?)

Need detailed Vp/Vs structure

Mohole candidate sites

Draft site survey plan in 2011

Region	Advantages	Disadvantages
Off Southern/Baja California	- Large range of water depth - Modest Moho T - higher latitude	- Few data available - Off-ridge volcanism
Cocos Plate	 Shallowest water depth Well-known tectonics Sits within a corridor that includes a complete tectonic plate life cycle 	- Highest Moho T - Faster than present-day fastest spreading rate - Near equator
Hawaii	- Lowest T - Nearby a large port	 Deepest water Near large Hotspot Close to arch volcanism Near equator Lowest end of fast- spreading rates

Table 1 – Regions of interest for preliminary site survey, with principal advantages and disadvantages

Geophysical studies toward Mohole

1st stage:

- Seismic imaging of "typical "oceanic crust in the northwestern Pacific
- Modeling Moho reflection based on ophiolite

2nd stage:

Integrated geophysical study in Mohole candidate areas

3rd stage:

Geophysical studies while- and post-drilling
 Core - log - seismic integration
 Long-term monitoring (geophysical / geochemical)